CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS
Pure Mathematics : Paper Two

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	9709	2

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	9709	2

Carry out, or indicate need for evaluation of $\cos ^{-1}(\sqrt{2} / 2)$
Obtain, or verify, the solution $\theta=\frac{7}{12} \pi$

Attempt correct method for the other solution in range
i.e. $-\cos ^{-1}(\sqrt{2} / 2)+\alpha$

Obtain solution $\theta=\frac{1}{12} \pi:\left[\mathrm{M} 1 \mathrm{~A} 0\right.$ for $\left.\frac{25 \pi}{12}\right]$
(ii) Consider sign of $2^{x}-x^{2}$ at $x=-1$ and $x=-0.5$, or equivalent

Complete the argument correctly with appropriate calculations
(iii) Use the iterative form correctly M1

Obtain final answer -0.77 A1
Show sufficient iterations to justify its accuracy to 2 s.f., or show there is a sign change in the interval $(-0.775,-0.765)$

State B is $(0,4) \quad$ B1
(ii) Use the product rule to obtain the first derivative

Obtain derivative $(4-x) \mathrm{e}^{x}-\mathrm{e}^{x}$, or equivalent
A1
Equate derivative to zero and solve for x
Obtain answer $x=3$ only
(iii) Attempt to form an equation in p e.g. by equating gradients of $O P$ and the tangent at P, or by substituting $(0,0)$ in the equation of the tangent at P
Obtain equation in any correct form e.g. $\frac{4-p}{p}=3-p$
Obtain 3-term quadratic $p^{2}-4 p+4=0$, or equivalent
Attempt to solve a quadratic equation in p M1
Obtain answer $p=2$ only

Obtain the given answer correctly

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	9709	2

(ii) State or imply the indefinite integral is $-\cot x$ B1
Substitute limits and obtain given answer correctly B1
(iii) Use $\cot ^{2} x=\operatorname{cosec}^{2} x-1$ and attempt to integrate both terms, or equivalent M1
Substitute limits where necessary and obtain a correct unsimplified answer A1
Obtain final answer $\sqrt{3}-\frac{1}{3} \pi$ A1[3]
(iv) Use $\cos 2 A$ formula and reduce denominator to $2 \sin ^{2} x$ B1
Use given result and obtain answer of the form $k \sqrt{3}$ M1
Obtain correct answer $\frac{1}{2} \sqrt{3}$ A1

