

November 2003

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Pure Mathematics : Paper Two

Image: A AND AS LEVEL - NOVEMBER 2003 Onion of the product product of the produ	Page 1	Mark Scheme	Syllabus	Paper
 1 <i>EITHER:</i> State or imply non-modular inequality e.g2 < 8-3x < 2, or (8-3x)² < 2², or corresponding equation or pair of equations Obtain critical values 2 and 3 ¹/₃ State correct answer 2 < x < 3 ¹/₃ <i>OR:</i> State one critical value (probably x = 2), from a graphical method or by inspection or by solving a linear equality or equation State the other critical value (probably x = 2), from a graphical method or by inspection or by solving a linear equality or equation State the other critical value correctly State correct answer 2 < x < 3 ¹/₃ 2 State or imply at any stage ln y = ln k - xln a Equate estimate of ln y- intercept to ln k Obtain value for k in the range 9.97±0.51 Calculate gradient of the line of data points Obtain value for a in the range 9.212±0.11 3 (i) <i>EITHER:</i> Substitute -1 for x and equate to zero Obtain answer a=6 <i>OR:</i> Carry out complete division and equate remainder to zero Obtain answer a=6 (ii) Substitute 6 for a and either show f(x) = 0 or divide by (x - 2) obtaining a remainder of zero <i>EITHER:</i> State or imply (x + 1)(x - 2)=x² - x - 2 Attempt to find another quadratic factor by division or inspection State factor (x² + x - 3) <i>OR:</i> Obtain x³ + 2x² - 2x - 3 after division by x + 1, or x³ - x² - 5x + 6 after division by x - 2 Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor (x² + x - 3) 4 (i) State answer R = 2 Use trig formula to find α <i>Otheria ensure R</i> = 1/2 	i uge i	A AND AS LEVEL – NOVEMBER 2003	9709	2
 EITHER: State or imply non-modular inequality e.g2 < 8-3x < 2, or (8-3x)² < 2², or corresponding equation or pair of equations Obtain critical values 2 and 3 ¹/₃ State correct answer 2 < x < 3 ¹/₃ OR: State one critical value (probably x = 2), from a graphical method or by inspection or by solving a linear equality or equation State the other critical value correctly State correct answer 2 < x < 3 ¹/₃ OR: State or imply at any stage ln y = ln k - xln a Equate estimate of ln y- intercept to ln k. Obtain value for k in the range 9.97 ± 0.51 Calculate gradient of the line of data points Obtain answer a=6 OR: Carry out complete division and equate remainder to zero Obtain answer a=6 State for and either show f(x) = 0 or divide by (x - 2) obtaining a remainder of zero EITHER: State for a and either show f(x) = 0 or divide by (x - 2) obtaining a remainder of zero Obtain x³ + 2x² - 2x - 3 after division by x + 1, or x³ - x² - 5x + 6 after division by x - 2 Attempt to find another quadratic factor by further division by relevant divisor or by inspection State factor (x² + x - 3) 4 (i) State answer R = 2 Cuser or user or a¹/₂ 				
Obtain critical values 2 and $3\frac{1}{3}$ State correct answer $2 < x < 3\frac{1}{3}$ OR:State one critical value (probably $x = 2$), from a graphical method or by inspection or by solving a linear equality or equation State the other critical value correctly State correct answer $2 < x < 3\frac{1}{3}$ 2State or imply at any stage ln $y = \ln k - x \ln a$ Equate estimate of ln y - intercept to ln k Obtain value for k in the range 9.97 ± 0.51 Calculate gradient of the line of data points Obtain value for a in the range 2.12 ± 0.11 3 (i) EITHER:Substitute -1 for x and equate to zero Obtain naswer $a=6$ OR:Carry out complete division and equate remainder to zero Obtain answer $a=6$ (ii)Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero EITHER:State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ OR:Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i)State answer $R = 2$ Use trig formula to find α Obtain canswer $n = -\frac{1}{2}$	1 EITHER:	State or imply non-modular inequality e.g. $-2 < 8-3x < 2$, or corresponding equation or pair of equations	or $(8-3x)^2 < 2$	² , M1
State correct answer $2 \le x \le 3\frac{1}{3}$ <i>OR</i> : State one critical value (probably $x = 2$), from a graphical method or by inspection or by solving a linear equality or equation State the other critical value correctly State correct answer $2 \le x \le 3\frac{1}{3}$ 2 State or imply at any stage ln $y = \ln k - x \ln a$ Equate estimate of ln y- intercept to ln k Obtain value for k in the range 9.97 ± 0.51 Calculate gradient of the line of data points Obtain value for a in the range 2.12 ± 0.11 3 (i) <i>EITHER</i> : Substitute -1 for x and equate to zero Obtain answer $a=6$ <i>OR</i> : Carry out complete division and equate remainder to zero Obtain answer $a=6$ (ii) Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero <i>EITHER</i> : State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ <i>OR</i> : Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α Obtain answer $n = -\frac{1}{2}$		Obtain critical values 2 and $3\frac{1}{3}$		A
 OR: State one critical value (probably x = 2), from a graphical method or by inspection or by solving a linear equality or equation State the other critical value correctly State correct answer 2 < x < 3 ¹/₃ 2 State or imply at any stage ln y = ln k - xln a Equate estimate of ln y- intercept to ln k Obtain value for k in the range 9.97 ± 0.51 Calculate gradient of the line of data points Obtain value for a in the range 2.12±0.11 3 (i) <i>EITHER</i>: Substitute -1 for x and equate to zero Obtain answer a=6 OR: Carry out complete division and equate remainder to zero Obtain answer a=6 (ii) Substitute 6 for a and either show f(x) = 0 or divide by (x - 2) obtaining a remainder of zero EITHER: State or imply (x + 1)(x - 2)=x² - x - 2 Attempt to find another quadratic factor by division or inspection State factor (x² + x - 3) OR: Obtain x³ + 2x² - 2x - 3 after division by x + 1, or x³ - x² - 5x + 6 after division by x - 2 Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor (x² + x - 3) 4 (i) State answer R = 2 Use trig formula to find α. 		State correct answer $2 < x < 3\frac{1}{3}$		Al
State correct answer $2 \le x \le 3\frac{1}{3}$ 2 State or imply at any stage ln $y = \ln k - x \ln a$ Equate estimate of ln y - intercept to ln k Obtain value for k in the range 9.97 ± 0.51 Calculate gradient of the line of data points Obtain value for a in the range 2.12 ± 0.11 3 (i) <i>EITHER</i> : Substitute -1 for x and equate to zero Obtain answer $a=6$ OR: Carry out complete division and equate remainder to zero Obtain answer $a=6$ (ii) Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero EITHER: State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ OR: Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α .	OR:	State one critical value (probably $x = 2$), from a graphical inspection or by solving a linear equality or equation State the other critical value correctly	method or by	y B1 B1
 2 State or imply at any stage ln y = ln k - xln a Equate estimate of ln y- intercept to ln k Obtain value for k in the range 9.97±0.51 Calculate gradient of the line of data points Obtain value for a in the range 2.12±0.11 3 (i) <i>EITHER</i>: Substitute -1 for x and equate to zero Obtain answer a=6 3 (i) <i>EITHER</i>: Substitute 6 for a and either show f(x) = 0 or divide by (x - 2) obtaining a remainder of zero <i>EITHER</i>: State or imply (x + 1)(x - 2)=x² - x - 2 Attempt to find another quadratic factor by division or inspection State factor (x² + x - 3) 4 (i) State answer R = 2 Use trig formula to find α 4 (i) State answer R = 2 Use trig formula to find α 		State correct answer $2 < x < 3\frac{1}{3}$		B1
 2 State or imply at any stage ln y = ln k - xln a Equate estimate of ln y- intercept to ln k Obtain value for k in the range 9.97 ± 0.51 Calculate gradient of the line of data points Obtain value for a in the range 2.12 ± 0.11 3 (i) <i>EITHER</i>: Substitute -1 for x and equate to zero Obtain answer a=6 <i>OR</i>: Carry out complete division and equate remainder to zero Obtain answer a=6 (ii) Substitute 6 for a and either show f(x) = 0 or divide by (x - 2) obtaining a remainder of zero <i>EITHER</i>: State or imply (x + 1)(x - 2)=x² - x - 2 Attempt to find another quadratic factor by division or inspection State factor (x² + x - 3) <i>OR</i>: Obtain x³ + 2x² - 2x - 3 after division by x + 1, or x³ - x² - 5x + 6 after division by x - 2 Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor (x² + x - 3) 4 (i) State answer R = 2 Use trig formula to find α 				[3]
Equate estimate of ln y-intercept to ln k Obtain value for k in the range 9.97 ± 0.51 Calculate gradient of the line of data points Obtain value for a in the range 2.12 ± 0.11 3 (i) EITHER:Substitute -1 for x and equate to zero Obtain answer $a=6$ NOR:Carry out complete division and equate remainder to zero Obtain answer $a=6$ N(ii)Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero EITHER:State or imply $(x + 1)(x - 2)=x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ NOR:Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ N4 (i)State answer $R = 2$ Use trig formula to find α Obtain answer $a = \frac{1}{2}$ N	2	State or imply at any stage $\ln y = \ln k - x \ln a$		B1
Obtain value for k in the range 9.97 ± 0.51 Calculate gradient of the line of data points Obtain value for a in the range 2.12 ± 0.11 3 (i) EITHER:Substitute -1 for x and equate to zero Obtain answer $a=6$ N0R:Carry out complete division and equate remainder to zero Obtain answer $a=6$ N(ii)Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero EITHER:State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ NOR:Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ N4 (i)State answer $R = 2$ Use trig formula to find α N		Equate estimate of $\ln y$ - intercept to $\ln k$		M1
Calculate gradient of the line of data points Obtain value for a in the range 2.12 ± 0.11 3 (i) EITHER:Substitute -1 for x and equate to zero Obtain answer $a=6$ NOR:Carry out complete division and equate remainder to zero Obtain answer $a=6$ N(ii)Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero EITHER:State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ NOR:Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ N4 (i)State answer $R = 2$ Use trig formula to find α N		Obtain value for k in the range 9.97 ± 0.51		Al
3 (i) <i>EITHER</i> : Substitute -1 for x and equate to zero Obtain answer $a=6$ <i>OR</i> : Carry out complete division and equate remainder to zero Obtain answer $a=6$ (ii) Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero <i>EITHER</i> : State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ <i>OR</i> : Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α		Calculate gradient of the line of data points Obtain value for g in the range 2.12 ± 0.11		M
3 (i) EITHER: Substitute -1 for x and equate to zero Obtain answer $a=6$ N OR: Carry out complete division and equate remainder to zero Obtain answer $a=6$ N (ii) Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero Image: Carry out complete division and equate remainder to zero Obtain answer $a=6$ (iii) Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero EITHER: State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ Image: Complete division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α		Obtain value for <i>a</i> in the range 2.12 ± 0.11		AI
3 (i) EITHER:Substitute -1 for x and equate to zero Obtain answer $a=6$ NOR:Carry out complete division and equate remainder to zero Obtain answer $a=6$ N(ii)Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero EITHER:State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ NOR:Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ N4 (i)State answer $R = 2$ Use trig formula to find α Obtain answer $R = 1$ $=$ N				[5]
OR:Carry out complete division and equate remainder to zero Obtain answer $a=6$ N(ii)Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero EITHER:State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ NOR:Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ N4 (i)State answer $R = 2$ Use trig formula to find α Obtain answer $a = \frac{1}{2} - \frac{1}{2}$ N	3 (i) <i>EITHER</i> :	Substitute -1 for x and equate to zero Obtain answer $a=6$		M1 A1
(ii) Substitute 6 for <i>a</i> and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a remainder of zero <i>EITHER</i> : State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ <i>OR</i> : Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α	OR:	Carry out complete division and equate remainder to zero Obtain answer $a=6$		M1 A1 [2]
(c)remainder of zero <i>EITHER</i> :State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspectionNormalized State factor $(x^2 + x - 3)$ Normalized State factor $(x^2 + x - 3)$ <i>OR</i> :Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i)State answer $R = 2$ Use trig formula to find α Obtain a quadratic field α	(ii)	Substitute 6 for <i>a</i> and either show $f(x) = 0$ or divide by $(x - 1)$	– 2) obtainin	ig a
<i>EITHER</i> : State or imply $(x + 1)(x - 2) = x^2 - x - 2$ Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ <i>OR</i> : Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α Obtain answer $\alpha = \frac{1}{2}$	()	remainder of zero	_) == ==	Bl
Attempt to find another quadratic factor by division or inspection State factor $(x^2 + x - 3)$ NOR:Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ N4 (i)State answer $R = 2$ Use trig formula to find α Obtain answer $q = \frac{1}{2}$ N	EITHER:	State or imply $(x + 1)(x - 2) = x^2 - x - 2$		B1
State factor $(x^2 + x - 3)$ <i>OR</i> : Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α Obtain answer $q = \frac{1}{2}$		Attempt to find another quadratic factor by division or ins	pection	Ml
<i>OR</i> : Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$ after division by $x - 2$ Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α		State factor $(x^2 + x - 3)$		Al
4 (i) Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α Obtain answer $q = \frac{1}{2}$	OR:	Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 3x^2 -$	-5x+6	
Attempt to find a quadratic factor by further division by relevant divisor or by inspection State factor $(x^2 + x - 3)$ 4 (i) State answer $R = 2$ Use trig formula to find α Obtain answer $\alpha = \frac{1}{2}$		after division by $x - 2$		Bl
4 (i) State answer $R = 2$ Use trig formula to find α		Attempt to find a quadratic factor by further division by re	elevant diviso	or
4 (i) State answer $R = 2$ Use trig formula to find α		or by inspection State factor $(x^2 + x - 3)$		M I A 1
4 (i) State answer $R = 2$ Use trig formula to find α		State factor $(x + x - 5)$		
4 (i) State answer $R = 2$ Use trig formula to find α				[4]
Use trig formula to find α	4 (i)	State answer $R = 2$		Bl
Obtain answer $\alpha = \frac{1}{2}$		Use trig formula to find α		M
Obtain answer $\alpha = -\frac{\pi}{3}$		Obtain answer $\alpha = \frac{1}{3}\pi$		Al
		Ŭ		[3]

Page 2	Mark Scheme	Syllabus	Paper 2
	A AND AS LEVEL - NOVEMBER 2003	9709	2
(ii)	Carry out, or indicate need for, evaluation of $\cos^{-1}(\sqrt{2}/2)$		M1*
	Obtain, or verify, the solution $\theta = \frac{1}{12}\pi$		A1
	Attempt correct method for the other solution in range i.e. $-\cos^{-1}(\sqrt{2}/2) + \alpha$. M1(dep*)
	Obtain solution $\theta = \frac{1}{12}\pi$: [M1A0 for $\frac{25\pi}{12}$]		A1
			[4]
5 (i)	Make recognisable sketch of $y = 2^x$ or $y = x^2$, for $x < 0$ Sketch the other graph correctly		B1 B1
			[2]
(ii)	Consider sign of $2^x - x^2$ at $x = -1$ and $x = -0.5$, or equivale Complete the argument correctly with appropriate calculate	ent ions	M1 A1
			[2]
(iii)	Use the iterative form correctly		M1
	Obtain final answer -0.77 Show sufficient iterations to justify its accuracy to 2 s.f., or	r show there	A1
	is a sign change in the interval $(-0.775, -0.765)$		A1
			[3]
6 (i)	State A is $(4, 0)$		B1
	State B is $(0, 4)$		BI
			[2]
(ii)	Use the product rule to obtain the first derivative Obtain derivative $(4 - x)e^x - e^x$, or equivalent		M1(dep) A1
	Equate derivative to zero and solve for x Obtain answer $r = 3$ only		M1 (dep)
			[4]
</td <td></td> <td></td> <td>[4]</td>			[4]
(111)	Attempt to form an equation in p e.g. by equating gradien and the tangent at P , or by substituting $(0, 0)$ in the equation	ts of <i>OP</i> on of the	
	tangent at P Obtain equation in any correct form a $a^{4-p} = 2$ in		MI
	Obtain equation in any correct form e.g. $\frac{p}{p}$		
	Attempt to solve a quadratic $p^2 - 4p + 4 = 0$, or equivalent		AI M1
	Obtain answer $p = 2$ only		A1
			[5]
7 (i)	Attempt to differentiate using the quotient, product or cha	in rule	M1
	Obtain the given answer correctly		Al
			[3]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	2
(ii)	State or imply the indefinite integral is -cotx		B
	Substitute limits and obtain given answer correctly		B
			[2
(iii)	Use $\cot^2 x = \csc^2 x - 1$ and attempt to integrate both term or equivalent	ns,	М
	Substitute limits where necessary and obtain a correct un	simplified	171
	answer	simplified	A
	Obtain final answer $\sqrt{3} - \frac{1}{2}\pi$		A
	3		[3
			•
(iv)	Use $\cos 2A$ formula and reduce denominator to $2\sin^2 x$		В
	Use given result and obtain answer of the form $k\sqrt{3}$		М
	Obtain correct answer $\frac{1}{2}\sqrt{3}$		А
	Z		[3